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ON EFFICIENT MULTIGRID METHODS FOR MATERIALS
PROCESSING FLOWS WITH SMALL PARTICLES

Boris Diskin∗ and Vasyl Michael Harik†

ABSTRACT

Multiscale modeling of materials requires simulations of multiple levels of structural
hierarchy. The computational efficiency of numerical methods becomes a critical factor
for simulating large physical systems with highly desperate length scales. Multigrid
methods are known for their superior efficiency in representing/resolving different lev-
els of physical details. The efficiency is achieved by employing interactively different
discretizations on different scales (grids). To assist optimization of manufacturing con-
ditions for materials processing with numerous particles (e.g., dispersion of particles,
controlling flow viscosity and clusters), a new multigrid algorithm has been developed
for a case of multiscale modeling of flows with small particles that have various length
scales. The optimal efficiency of the algorithm is crucial for accurate predictions of the
effect of processing conditions (e.g., pressure and velocity gradients) on the local flow
fields that control the formation of various microstructures or clusters.

1 INTRODUCTION

Capability to efficiently simulate materials processing flows with small particles is important
for optimization and manufacturing control of advanced materials that have tailored physical
properties (e.g., stiffness or strength, thermal or electric conductivity). Ability to process
polymers with filler particles is essential for design of multifunctional materials since the
commonly used low-cost plastics (e.g., polypropylene or polyamide) have low thermal and
low electrical conductivity without any additives. These properties are critical for designing
novel aerospace structures like flexible wings, structures with active controls, and multifunc-
tional membranes. Applications such as heat sinks, radio frequency interference shielding,
electromagnetic shielding and electronic packaging also require new composite materials with
higher thermal and electrical conductivities.

Successful control of manufacturing conditions for materials processing may include im-
proving dispersion of particles and reducing the cluster size, applying pressure gradient or
shear strain, as well as controlling flow viscosity, microstructural texture or particle orienta-
tion. Any particular manufacturing process may include multiple stages and many processing
parameters. As a result, optimization of the flow control requires accurate models in order
to resolve local particle distributions, their relative motion, and interactions between small
particles and the surrounding polymer matrix for different processing parameters. Moreover,
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such models are needed to predict the formation of various microstructures or clusters and
to simulate the effect of processing conditions (e.g., pressure and velocity gradients or flow
rates) on materials composition. Two-phase processing flows may involve highly desperate
length scales caused by the distribution of particle sizes that may span a range from tens of
nanometers to tens of microns (e.g., sub-micron particles or carbon filaments, conglomerates
of these particles or clusters). To model the local and global transport properties of such
two-phase flows, efficient hierarchical methods for multiscale modeling are required.

The processing flows of two-phase viscous materials can be often described by partial dif-
ferential equations of elliptic type (e.g., Poisson equation). The processing of filled polymers
involves viscous flows of suspended particles and, in some cases, flow control with an electro-
magnetic field applied. Because the flow is very viscous, and the filler particles are small, the
dynamic effects can usually be neglected. Consequently, the viscous flows can be described by
either the Stokes or Poisson equations. Electrostatic effects can be also analyzed with these
equations. The smallest size of the filaments in this study can be at the sub-micron scale.
While accurate constitutive models for nano-structured multifunctional composites are not
available, there is a need for the physics-based engineering approximations that would extend
the applicability of available models to address some of the nanoscale effects. As a starting
point, numerical models sensitive to the materials microstructure (e.g., micromechanical and
submicron length scales) are considered. This paper will focus on efficient multiscale meth-
ods for solving the Poisson equation for materials systems with significant microstructural
hierarchy or multiple length scales.

1.1 Brief Review of Processing Flow Analyses

Multiscale materials modeling methods have wide range of applications. In computational
materials science, hierarchical numerical methods are needed to address physical phenomena
at sub-micron scale and their influence (or dependence) on macroscopic physical conditions.
For the considered case, analysis methods are required to investigate material systems with
small particles and their sensitivity to the global physical conditions (e.g., pressure, velocity
distribution, shear stresses, etc.). The simplest models developed for heterogeneous material
systems with several length scales involve the concepts of effective material properties such as
an effective flow viscosity, for example. Classical analysis of the effective elongational viscos-
ity by [Batchelor, 1971] illustrates this approach for suspensions of collimated fibers at dilute
and semi-dilute concentrations in a Newtonian fluid. Later, [Shaqfeh and Friedrickson, 1990]
have accounted for higher-order interaction between particles and changes in individual fiber
orientation.

The need for hierarchical methods is especially acute when local effects such as fiber ori-
entation and cluster formation are addressed for non-dilute suspensions. For concentrated
suspensions, the anisotropic flow properties result in effective viscosity being represented by
a tensor ([Christensen, 1992, Gibson, 1989]) with three independent viscosity coefficients.
Pipes and his students ([Pipes et al., 1994]) have developed an effective constitutive rela-
tion for highly anisotropic behavior of concentrated flow systems. In a micromechanical
analysis of collimated fiber suspensions, they predicted principal anisotropic viscosities as
a function of both the matrix fluid properties and fiber packing geometries. Such analysis
applies to materials containing perfectly collimated, discontinuous fibers that have an over-
lap length equal to one-half of the fiber length. It was also pointed out that the material

2



microstructure can not be perfect, but it can be tailored to enhance effective material prop-
erties ([Pipes et al., 1994]). Furthermore, microstructural variations in fiber length and fiber
distribution should be examined.

Analyses of viscous materials systems with inclusions are often carried out by using
unit-cell models that simulate a representative volume element and a typical microstructure
under periodic boundary conditions ([Harik and Cairncross, 1999, Pipes et al., 1994]). Even
processing flows with randomly-distributed filaments of different lengths can be described by
a unit cell involving a semi-random fiber distribution and the surrounding polymer matrix
(see Figure 4 in Section 5.) Geometry of such a unit cell is well represented by a rectangle. In
the representative volume element, the viscous flow field is governed by the Poisson equation

∆U(x, y) = Px, (1)

where U(x, y) is the flow velocity and Px is the normalized pressure gradient. The unit cell
is usually subjected to periodic boundary at x = 0 and x = L. Several relevant sets of
boundary conditions should be considered at y = 0 and y = H .

1. The flow conditions in an extrusion flow or a pipe flow are repressed by the no-slip
Dirichlet conditions: U = 0 for y = 0 and y = H .

2. If the processed fluid suspension is highly viscous and the channel walls are perfectly
lubricated, then the perfect slip (the Neumann boundary conditions) may be allowed:
∂yU = 0 for y = 0 and y = H . A partial slip can be simulated by mixed boundary
conditions.

3. During manufacturing of thin films, the no-slip condition is maintained on the substrate
surface along with the shear-free condition on top free surface: U = 0 for y = 0 and
∂yU = 0 for y = H . Here, the normalized pressure gradient may vary: Px = 0, 1, 2, . . .
.

4. For the case of zero pressure gradient: Px = 0, one should consider the processing
conditions such as U = 0 for y = 0 and ∂yU = τ for y = H , where τ is the ap-
plied shear traction that may vary from unity and up. Allowing a partial slip or
a shear interaction on the inclusion surface may lead to highly nonlinear problems
([Harik and Cairncross, 1999]).

The above formulations of mathematical problems for polymer systems may be used for
various particle distributions and different flow conditions. Later in the paper, examples of
viscous flows of a polymer filled with elongated inclusions or short fibers will be presented
along with the analysis of numerical efficiency for the examples considered. This paper
addresses the need for numerical methods that have reliable and efficient capabilities to
simulate various physical phenomena involving significant hierarchical effects.

1.2 On Superior Efficiency of Multigrid Methods

The “golden rule” of the multigrid (or more general multiscale) methods as defined in
[Brandt, 1984] is the following: “The amount of computational work should be proportional
to the amount of real physical changes in the computed system.”
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Figure 1: Computational efficiency: multigrid cycle (triangles) vs. Gauss-Seidel relaxation
(circles)

That is, whenever, the computer grinds very hard for small or slow real physical effects,
there must be a better computational way to achieve the same goal. Well known examples
of numerical processes suffering a convergence slowdown are the usual single-grid methods
as Gauss-Seidel relaxation, alternative-direction iterations, incomplete LU decomposition,
(pseudo) time marching, etc., applied for solution of the algebraic equations arising from
discretizing partial differential equations, e.g., by finite element, finite difference, finite vol-
ume or any other discretization method. The reasons for slowness may be quite different,
for example, too small changes in the error from one iteration to the next or too small time
steps allowed by the stability requirements. Multigrid methods may help in such problems.

The difficulties are usually related to some “stiffness” in the problem; i.e., to existence
of several solution components with different scales which conflict each other. For example,
smooth components can be efficiently approximated on coarse grids, but are very slow to
converge on fine grids with many grid points per a characteristic scale; the high-frequency
components must be approximated on the fine grids. By employing interactively several
discretizations on different scales, multigrid techniques resolve such conflicts, avoid stalling,
and do away with the computational waste.

The multigrid methods are often employed as fast solvers for discretized systems of par-
tial differential equations [Brandt, 1984, Briggs et al., 2000, Trottenberg et al., 2000]. The
multigrid solution usually requires just a few work units, where a work unit is the amount
of computational work involved in expressing the algebraic equations (computing residuals
or performing a simple relaxation sweep). Figure 1 illustrates the superiority of a multi-
grid method over the standard pointwise Gauss-Seidel relaxation technique in solving the
Laplace equation with the Dirichlet boundary conditions (the solution values are given at
the boundary). On this figure, the horizontal axis marks the work units required for com-
putations; on the vertical axis, the L2-norm of the residual function is displayed. A random
initial approximation in the interior has been chosen. The complexity of one Gauss-Seidel
iteration is taken as a work unit, then, the complexity of the multigrid cycle used in the
computations is 16/3 work units. After several initial relaxation sweeps, the convergence of
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the Gauss-Seidel iterations (circles) is blocked, i.e., the error reduction is virtually invisible.
On the contrary, the convergence rates the multigrid method (triangles) are fast and steady.

The applications of the multigrid methods extend far beyond solutions of discretized par-
tial differential equations. Multigrid processes can also cut, often by several orders of magni-
tude, the requirements for the computer resources to simulate large systems involving mul-
tiscale phenomena. The greatest potential of the multigrid methods for nano-technological
applications is opportunities for efficient bridging different scales and establishing an ade-
quate communication between different-scale models.

1.3 Review of Multigrid Methods for Problems with Small Inclusions

In viscous suspension flows, differences in the scales of the suspended particles are usually
significant. Assuming that even the smallest scales need to be resolved, enormous compu-
tational resources are required to solve such problems, and the most efficient algorithms
available must be employed.

The fastest solvers for discretized elliptic partial differential equations are the full-multigrid
(FMG) algorithms. Such an algorithm can, for example, solve the five-point discretization
of the two-dimensional Poisson equation in a general domain to errors below the discretiza-
tion errors in about 22 computer operations per grid point; each additional multigrid cycle,
costing about 15 operations per grid point, reduces the errors by more than another order of
magnitude. Similar efficiency, with the number of operations just growing proportionately
to the number of operations involved in describing the discretized system, has been obtained
for some nonlinear systems of equations, including Stokes and Navier-Stokes equations that
represent more involved physical models.

The physical model (1) considered in this paper is a Poisson equation with multiple
small inclusions (pieces of the boundary) embedded into the interior of the domain. These
inclusions are often so small, occupying just a few points on the fine grid, that they cannot
be properly incorporated into a coarse-grid formulation. Efficiency, i.e., convergence rate, of
classical multigrid solvers deteriorates significantly because of the poor accuracy of coarse-
grid approximations.

Several algorithm modifications has been studied in the literature to reduce (prevent) the
degradation of the multigrid efficiency in solving problems with small inclusions:

• A thorough study of the effects of different ways to represent small inclusions on the
coarse grids has been performed in [Mikulinsky, 1993]. The general conclusions suggest
that inclusions with the Dirichlet boundary conditions represent the most difficult case,
while small inclusions with the Neumann boundary conditions may be neglected on
the coarse grids without any significant effect on the solver efficiency. In our numerical
tests, we consider only the Dirichlet boundary conditions on the inclusions’ borders,
while the conditions at the external boundary of the computational domain may vary.
For the inclusions with the Dirichlet boundary conditions, [Mikulinsky, 1993] proposes
an extension on the next coarse-grid. The results of numerical tests presented in sec-
tion 3 suggest that this approach is not always efficient. Moreover it is becoming even
more problematic for the problems where the inclusions are varying in size, numerous,
and actually occupying a significant part of the computational domain. Such problems
represent the major interest for nanostructural materials applications and require other
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solution approaches to be explored.

• An alternative method based on recombination of iterants (other names of the tech-
nique are polynomial acceleration and Krylov subspace acceleration) has been proposed
in the paper [Brandt and Mikulinsky, 1995]. In this method, small inclusions are ne-
glected on the coarse grids regardless the type of the boundary conditions. The special
fine-grid errors that cannot be eliminated in the coarse-grid correction are reduced
through recombining iterants obtained at different stages of a multigrid algorithm.
Specifically, let us have k approximate solutions (iterants) u(1), u(2), . . . , u(k), e.g., each
new iterants has been obtained by applying a multigrid cycle to the previous one. The
new approximation can be computed as a (linear) combination of these iterants:

u =
k−1∑
n=1

αnu(n) +
(
1 −

k−1∑
n=1

αn

)
u(k). (2)

The coefficients αn are chosen to minimize a norm of the residual function. In general
these coefficients may be smooth functions of spatial variables allowing local recom-
bination of iterants ([Brandt and Mikulinsky, 1995]). The algorithm significantly im-
proves efficiency over classical multigrid methods, restoring fast convergence rates on
relatively large (fine) grids. However, the efficiency per a work unit of the algorithm
recombining a small number of iterants (say, two) is not optimal. Moreover, the con-
vergence rates of the algorithm are slightly deteriorating for finer grids. The results of
numerical experiments with this algorithm are reported in section 3. The convergence
properties of the algorithm version with local recombination of iterants, that is the
only viable option for the problem with many small inclusions, are even less favorable.
Another disadvantage of neglecting inclusions on coarse grids may become prominent
if the boundary conditions at an inclusion define the solution values far away from the
inclusion. One can think about problems with the Neumann boundary conditions at
the external edges of the computational domain and the Dirichlet boundary conditions
at the only inclusion in the interior. In this case, the inclusion neglecting makes the
problem ill posed.

We have convinced ourselves that recovering the optimal multigrid efficiency in solution
of problems with small inclusions is impossible without coarse grids accounting for the pres-
ence of the inclusions. Assuming that in the most cases we cannot directly represent small
inclusions on coarse grids, we have focused on changing locally the coarse-grid discretization
to preserve some information about the inclusions in the fine-grid formulation. The ideal
changes should bring enough accuracy to the coarse-grid solution and be cost effective.

The ultimate method that would resolve the problem of a poor coarse-grid accuracy is
the highly accurate coarsening scheme proposed in [Brandt, 2000]. This methods provides a
way to design a coarse-grid discretization that would approximate the fine-grid discretization
with the accuracy that is exponentially improving as function of the characteristic size of
the coarse-grid stencil. This algebraic coarsening scheme is extremely accurate but, in the
same time, very cost consuming, requiring hundreds of computer operations to derive a
discrete operator in one coarse-grid point. The most encouraging feature of this coarsening
scheme is that the number of computer operations is constant independent on the grid size,
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i.e., the complexity of the algorithm remains linear as function of the number of points. In
general case of a very complicated environment, this method represents an attractive option
for deriving large-scale approximations. The method (or its cheaper approximations) is still
can be used locally for derivation of the coarse-grid equations not everywhere, but only in
“problematic” regions.

The coarsening method employed in this paper can be characterized as a local Galerkin
coarsening ([Briggs et al., 2000, Trottenberg et al., 2000]). The standard Galerkin coarsen-
ing method assumes that an accurate approximation to the fine-grid solution can be obtained
by a linear interpolation from a coarse-grid function. The coarse-grid operator is defined by
successively applying (1) prolongation operator, that interpolates coarse-grid functions to
the fine grid, (2) the fine-grid discretization operator, and (3) the restriction operator, that
averages the obtained fine-grid function back to the coarse grid. We call this method local
because the Galerkin method is only employed in the neighborhoods of some of inclusions
depending on their coarse-grid representation.

The coarse-grid representation of an inclusion used in our tests contains only the coarse-
grid points located at the area physically occupied by the inclusion. This representation
implies that the number of grid-points representing the inclusion may only decrease on the
coarse grids. The inclusion is called fully represented on the coarse grid, if it spans the same
number of points on the coarse grid as on the fine grid, otherwise, the inclusion is called
contracted or vanished. The relative part of the area that is strongly affected by an inclusion
fully represented on the coarse grid is expanded. Our experience shows that such expanded
inclusions represent the most difficult case in the numerical computations.

We assume that the target grid is fine enough to accurately represent all the inclusions.
Thus, on the target grid, the discrete operator is always the five-point Laplacian at all the
interior grid points. On the coarse grids, away from the inclusions or in the vicinity of a
fully represented inclusion, the discretization is again the five-point Laplace operator. In
the neighborhood of a contracted or vanished inclusion, the Galerkin coarsening is used.
The details of the restriction and prolongation operators used in the Galerkin coarsening are
given in section 3.

2 PROBLEM FORMULATION

The differential Poisson equation defined in an open domain Ω with boundary ∂Ω is given
by

∆u(x) = f(x) (x ∈ Ω), (3)

where f is a known source function, u is the unknown function, and ∆ ≡ ∂xx + ∂yy is the
Laplace operator. In addition to the interior equation (3), suitable boundary conditions will
be assumed on ∂Ω. In our standard example, this will be either the Dirichlet boundary
condition

u(x) = g1(x) (x ∈ ∂Ω) (4)

or the Neumann boundary condition

∂nu(x) = g2(x) (x ∈ ∂Ω), (5)

where ∂n is a derivative along the direction normal to the boundary.
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2.1 Multigrid Cycles

In this section, multigrid cycles for solving a discrete approximation to the problem (3) are
defined. The discrete operators are finite difference approximations to the Laplace operator
on Cartesian possibly anisotropic grids. For any grid Ωhx,hy covering the domain Ω, where
hx and hy are meshsizes in the corresponding directions, the discretization of (3) is written
as

∆hx,hyui,j = fi,j, (i, j) ∈ Ωhx,hy , (6)

where i = x/hx, j = y/hy are integers and

∆hx,hyui,j ≡ 1

h2
x

(
ui+1,j − 2ui,j + ui−1,j

)
+

1

h2
y

(
ui,j+1 − 2ui,j + ui,j−1

)
(7)

is the five-point Laplacian. Also for simplicity, we treat here only problems where ∂Ω coin-
cides with the grid lines of all our grids, in which case the implementation of the boundary
condition (4) is straightforward. The discrete boundary condition (5) (together with the
interior equation) is implemented at the boundary j = 0 as

1

h2
x

(
ui+1,0 − 2ui,0 + ui−1,0

)
+

1

h2
y

(
2ui,1 − 2ui,0

)
= fi,0 +

1

hy

g2(ihx). (8)

Given a discrete equation of the form (6), and an initial approximate solution at the fine
grid, a two-level Correction Scheme(CS) cycle can be described in the following six steps
[Brandt, 1984, Briggs et al., 2000, Trottenberg et al., 2000].

1. Pre-relaxation. Improve the current fine-grid solution approximation by ν1 relaxation
sweeps.

2. Residual restriction. Form a coarse-grid approximation to the fine-grid residual func-
tion. This intergrid transfer operator is called restriction and is denoted Rh

3. Coarse-grid problem. Construct the coarse-grid operator and form the coarse-grid
problem with the source function given by the residual restricted at step 2. The coarse-
grid operator is denoted ∆Hx,Hy , where Hx and Hy are the coarse-grid meshsizes.

4. Coarse-grid solution. Solve the coarse-grid problem. The solution is an approximation
to the fine-grid error function. At this stage, we do not specify the solution method. It
can be any method (direct or iterative) providing an accurate solution to the coarse-grid
problem.

5. Correction prolongation. Interpolate the coarse-grid solution to correct the current
fine-grid approximate solution. This intergrid transfer operator is called prolongation
and is denoted P h

6. Post-relaxation. Improve the current fine-grid solution approximation by ν2 relaxation
sweeps.
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A multilevel cycle is obtained from the two-level cycle by recursively applying the same
cycle to the solution of the coarse-grid problem (step 4). The coarsest grid where the problem
is solved precisely is the grid having few mesh spaces in at least one of the spatial directions.
One can introduce the the cycle index parameter γ that is defined as the number of coarser-
grid cycles per fine grid cycle. Cycles with γ = 1 are called V cycles and denoted V (ν1, ν2);
those with γ = 2 are termed W cycles and denoted W (ν1, ν2). For uniformly elliptic problems
either of these is used, usually with ν1 + ν2 = 2 or 3. Each such cycle typically reduces the
error at least by an order of magnitude.

In the full multigrid (FMG) algorithm, an initial fine-grid approximation to the solution
of (6) is first obtained from the coarser grid, and then it is improved by multigrid cycles.
Thus, the algorithm FMGm(ν1, ν2) for solving (6) is recursively defined as the following four
steps.

1. Coarse-grid Solution. The coarse-grid equation is formed by choosing the coarse-grid
operator and restricting the fine-grid source function fi,j to the coarse grid. In the
FMG algorithm, the source function at the next coarse level is obtained by properly
averaging the corresponding fine-grid function; only at the target finest level, the source
function is calculated directly from f . This guarantees the proper performance of the
algorithm for any (not just smooth) f . The discretization of the boundary conditions
could be handled similarly: in particular the values gi,j of the boundary conditions on
the coarse grids could be obtained by fully averaging functions g from the fine grids.

2. Recursion. For the coarsest grid, solve the problem directly, otherwise apply FMG(ν1, ν2)
for solving the current-grid problem.

3. Solution interpolation. Interpolate the solution obtained after the FMG algorithm to
the next fine grid to form the initial approximation.

4. Multigrid Cycle. Improve the initial approximation with m multigrid cycles (say,
V (ν1, ν2)).

For uniformly elliptic problems, a cheap algorithm such as FMG1(1, 1) is easily enough
to obtain a solution error substantially smaller than the discretization error.

3 MODEL PROBLEM: ONE INCLUSION

In this section we test different computational approaches to handle the problem associated
with one small inclusion.

Let the computational domain (x, y) ∈ [0, 4] × [0, 1] be covered with an anisotropic
Cartesian mesh with mesh spaces hx and hy in the corresponding directions. The grid
indexes are changed as i = 0, 1, . . . , nx, nx = 4/hx and j = 0, 1, . . . , ny, ny = 1/hy. The
standard second-order accurate five-point discretization for the Laplace operator is applied in
the interior of the domain. The discrete periodic conditions are applied at the vertical edges
of the external boundary as u(0, j) = u(nx, j). The type of boundary conditions (Dirichlet or
Neumann) may vary at the horizontal pieces of the domain boundary, j = 0 and j = ny. The
coarse grids are built by semicoarsening, i.e., the mesh sizes are doubled in the x-direction
(Hx = 2hx, Nx = nx/2) and remain the same in the y-direction (Hy = hy, Ny = ny).
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Figure 2: The inclusion location

The coarsest grid where the problem is solved precisely is the grid with eight mesh spaces
in the horizontal direction. A small inclusion with the Dirichlet boundary condition is
located in the middle of the domain occupying three grid points on the fine grid, (̃i, j̃),
j̃ = (ny

2
−1), ny

2
, (ny

2
+1). The x-coordinate of the inclusion may vary, being either ĩ = nx

2
−1

or ĩ = nx

2
, to represent both the important cases: (1) the inclusion is totally neglected at

the coarse-grid and (2) the inclusion is fully represented on all the coarse grids. Figure 2
illustrates the possible inclusion location. The small bullets denote the fine-grid points. The
inclusion is shown as a rectangle. At the points within the rectangle, the Dirichlet boundary
conditions are applied. The gray color denotes the coarse-grid points with the standard
five-point discretization of the Laplace operator. The white circles are the coarse-grid points
where the Galerkin operator is employed. The left figure shows the inclusion to be neglected
on the coarse grid; on the right figure, the inclusions is fully represented on the coarse grid.

4 NUMERICAL IMPLEMENTATION

4.1 Modified Multigrid Cycle

In this paper we propose a modification of a standard multigrid cycle to be used in compu-
tations with the small inclusions. The ingredients of the modified cycle are the following:

1. Relaxation. The relaxation method is the red-black vertical line (zebra) Gauss-Seidel
relaxation [Briggs et al., 2000, Trottenberg et al., 2000]. In this method, the domain
is swept twice. In the first sweep, all the solution ui,j at the grid points with odd
sub-indexes i are simultaneously updated to satisfy local discrete equations. After this
sweep, the residuals become zero at the every other vertical line. The second sweep
updates solution at the vertical lines with even sub-indexes i. For proper discretized
uniformly elliptic problems, this relaxation scheme is usually very efficient in reduc-
ing high-frequency error components. A multigrid algorithm combined line relaxation
with semicoarsening has been studied earlier (e.g., in [J. E. Dendy Jr. et al., 1992])
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and is known for an excellent efficiency in serial and parallel computations. This
combination has also been successful for efficient multigrid solution of nonelliptic prob-
lems [Brandt and Diskin, 2000, Diskin, 2001, Llorente et al., 2001], forming a good ba-
sis for future extensions to Navier-Stokes equations. The relaxation used in our tests
is supplemented with a local relaxation procedure described in the paragraph 5 below.

2. Restriction. The residual restriction at the most of the domain is given by a symmetric,
horizontal, full weighting operator

Ri,j = Rhri,j =
1

4

(
r2i−1,j + 2r2i,j + r2i+1,j

)
, (9)

where ri,j = fi,j − ∆hx,hyui,j is the fine-grid residual function, and Ri,j is the coarse-
grid residual function. The same restriction, Rh, is used for computing the coarse-grid
source function within the FMG algorithm.

To guarantee the optimal efficiency, the residual restriction should be modified in the
vicinity of the boundary because, for the Dirichlet boundary, the coefficients of the
operator Rh should depend on the distance from the boundary. It is a difficult task
to derive the precise residual restriction in the case of a complicated boundary shape.
The general remedy is to include local relaxation sweeps reducing the residuals in the
vicinity of the boundary to the level much lower that the residual level typical for
the interior of the domain. If the residuals become small, their precise restriction is
not important any more. For example, [Brandt and Mikulinsky, 1995] suggests not to
transfer these residuals at all. In our tests, we employ a local relaxation procedure
in the vicinity of the inclusion and modify the residual restriction near the inclusions
depending on how the inclusion is represented on the coarse-grid. If the inclusion is
fully represented on the coarse grid, i.e., ĩ is even (̃i = 2k), the restriction operator
remains unchanged, otherwise (̃i = 2k − 1), the restriction operator is changed at the
adjacent coarse-grid points as

Rk,j̃ = 1
3

(
2r2k,j̃ + r2k+1,j̃

)
,

Rk−1,j̃ = 1
3

(
2r2k−2,j̃ + r2k−3,j̃

)
.

(10)

This change of the restriction does not significantly affect the source function on the
coarse grid (because of the local relaxation involved), but it is important for definition
of the Galerkin operator.

3. Prolongation. The prolongation operator for the coarse-grid correction is a second-
order accurate linear interpolation defined as

v = P hV ;

{
v2i,j = Vi,j,

v2i−1,j = 1
2

(
Vi−1,j + Vi,j

)
,

(11)

where V is the coarse-grid solution and v is the correction to the fine-grid solution
approximation. The solution prolongation within an FMG1(1, 1) algorithm usually
requires a higher order of accuracy to guarantee the convergence of the errors below
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the level of discretization error. However, practically, a linear interpolation is often
good enough; in our numerical tests, the same linear prolongation operator (11) is
used for the FMG solution interpolation.

4. Coarse-Grid Operator. Away from the inclusion, the five-point Laplacian is always
used on the coarse grids. If the inclusion is fully represented on the coarse-grids, this
five-point discretization is used everywhere in the interior. If the inclusion is neglected
on the coarse grids, the discrete coarse-grid operators on the first coarse grid where the
inclusion become invisible are changed at the points located at the less-than-meshsize
distance from the inclusion. The operators are constructed by the Galerkin method as

∆Hx,Hy ≡ Rh∆hx,hyP h, (12)

but use the boundary values at the inclusion explicitly. Because of the specific form
of the restriction operator Rh, this construction leads to a six-point one-sided discrete
stencil. The Galerkin method is also used for the coarser grids in this region, always
applied to the points adjacent to the inclusion location. For the next coarsening steps,
the symmetric restriction operator Rh (9) is used.

5. Local Relaxation. The local relaxation performs additional relaxation sweeps in the
region adjacent to the inclusion. The major goal of the local relaxation is to reduce
residuals here to facilitate their restriction to the coarser grid. The local relaxation
sweeps implemented as a part of a global relaxation procedure. In the numerical tests,
all the points located within a rectangular box ĩ − 3 ≤ i ≤ ĩ + 3, ny

2
− 4 ≤ j ≤ ny

2
+ 4

are relaxed with ten additional sweeps per each global relaxation step. At the pre-
relaxation stage, the local sweeps follow the global one; at the post relaxation stage,
the local sweeps precede the global one. The local relaxation is performed on all the
grids where the inclusion is represented.

4.2 Numerical tests

In this section we compare the performance of three different multigrid algorithms: (I) The
classical multigrid cycle that uses the standard coarse-grid discretization (7) and residual
restriction (9) everywhere, (II) the accelerated multigrid cycle employing recombination of
two iterants, and (III) the modified cycle using the local Galerkin coarsening. The algorithms
(I) and (III) are identical when the inclusion is fully represented on all the grids.

Table 1: Asymptotic convergence of V (1, 1) multigrid cycles with the Dirichlet boundary con-
ditions at the upper boundary and the Neumann boundary conditions at the lower boundary.
The inclusion is neglected on the coarse grids

nx × ny Ref. Alg. I Alg. II Alg. III

64 × 32 0.09 0.63 0.03 (0.17) 0.10
128 × 64 0.09 0.98 0.04 (0.20) 0.10
256 × 128 0.09 1.31 0.05 (0.23) 0.10
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Table 2: Asymptotic convergence of multigrid cycles with the Dirichlet boundary conditions
at the upper boundary and the Neumann boundary conditions at the lower boundary. The
inclusion is fully represented on all the coarse grids

nx × ny 2-level Ref. V(1,1) 2-level V(1,1) W(1,1) FV(1,1)

64 × 32 0.05 0.11 0.05 0.05 0.05
128 × 64 0.05 0.19 0.07 0.06 0.08
256 × 128 0.05 0.27 0.07 0.07 0.10

In the table 1 we compare the asymptotic convergence of V (1, 1) multigrid cycles for
target grids of different sizes. The zero values for the source function f and for the boundary
conditions are chosen to ensure the zero exact solution. Initial solution values in the interior
are chosen randomly. The asymptotic rate is considered established when the differences
in the convergence rates of three consecutive cycles are less than 0.005. As a reference
point, we use the convergence of the standard multigrid V (1, 1) cycle in the domain without
inclusions. Because the algorithm recombining iterants need to perform two cycles at each
iteration, the numbers in parentheses show the convergence rate normalized per work in
one cycle (square root of the first value). One can see that the classical algorithm does not
work at all diverging for the fine grids. The algorithm with recombination provides good
convergence rates, however, the (normalized) rates are significantly slower than the rates
of the reference algorithm and seem to slightly deteriorate on the fine grids. Moreover, the
FMG method with the recombination cycle is significantly more expensive because it requires
at least two cycles to be performed at each level. The modified algorithm fully restores the
convergence rates demonstrated by the reference algorithm.

Table 2 contains the results of the tests performed for the problem where the inclusion
is fully represented on all the grids. The full coarse-grid representation of the inclusion
leads to an expansion of the area where the solution is strongly affected by the inclusion.
The reference algorithm used for the tests is a two-level V (1, 1) cycle for the problem with
no inclusions. We do not present here the results for the algorithm with recombination
of iterants; the algorithm neglects the inclusion on the coarse grids and behaves in the
same way as in previous tests (table 1). Instead we study the performance of the modified
algorithm depending on the cycle index. The reason for this study is the observation that
the convergence rates of the classical V-cycle (for this problem, the modified and classical
V-cycles coincide) is significantly slower than the convergence rates of the reference cycle (see
data in columns 2 and 3 of table 2). On the other hand, the convergence rates for a two-level
cycle applied to the problem with a small inclusion (column 4 in table 2) are (nearly) as
good as for referenced one. Thus, one can expect to improve the convergence rates with
cycles of higher indexes. Indeed, W (1, 1)-cycle is capable to recover the convergence rates of
the two-level algorithm (column 5 in table 2). However, for the two dimensional algorithms
with semicoarsening, the complexity of W cycles is not linear any more. In fact, the amount
of work performed at a coarse grid becomes approximately the same as the amount of work
performed at the target fine grid. This increased amount of work on the coarse grids leads
to a logarithmic factor, (i.e., the number-of-levels factor) in the complexity formula. To keep
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the complexity linear, we tested a much cheaper cycle, called FV-cycle, that can be derived
from the two-level algorithm by applying an FMG method to solve the coarse-grid problem.
FV cycle is 50% more expansive than V -cycle and has a linear complexity. The results show
that FV cycle demonstrates (nearly) optimal convergence rates for the problem with the
inclusion fully represented on the coarse grids.

5 SIMULATIONS OF PROCESSING FLOWS WITH MULTIPLE INCLU-
SIONS

The modified multigrid FV cycle is applied for solution of the Poisson equation with many
inclusions differing in length and occupying an essential part of the domain.

For simplicity of programming, we make the following assumptions about the inclusions’
locations and size distribution; none of these assumptions is mandatory for the applicability
and efficiency of the numerical algorithm.

• The inclusion boarders coincide with the grid lines on all the grids, i.e., all the inclusions
are rectangular with a horizontal/vertical orientation; no oblique inclusions are allowed.

• The inclusions are varying in the lengths only; all the inclusions have the same width
of 1/64 of the vertical size of the computational domain.

• The inclusions cannot touch the horizontal pieces of the external boundary.

• If we separate the computational domain into imaginary 64 equal horizontal levels,
the inclusions are allowed to occupy only odd levels, but not the 1-st level adjacent
to the external boundary. This assumption prevents the coarse-grid collisions of the
inclusions located on different levels. The inclusions located on the same level, still
may collide on the coarse grids.

The boarders of the coarse-grid representation of an inclusion are given by intersection
of the coarse grid lines with the area occupied by the inclusion. Therefore, an inclusion may
contract or occupy the same area. If the inclusion contracts, the Galerkin method is used
to form the coarse-grid operator in the neighborhood of the contacted side of the inclusion.
Otherwise, the standard five-point Laplacian is used.

The statistical distribution of inclusion lengths is shown in the Figure 3. The lengths are
measured in the width units. The inclusions spatial distribution is shown in the figure 4.
The volume ratio is equal 0.13, i.e., about 13% of the computational domain is occupied by
the inclusions.

Three model problems are considered:

1. The homogeneous Dirichlet boundary conditions at both the horizontal pieces of the
external boundary (u = 0 for y = 0 and y = 1) and a unit normalized pressure gradient
in the interior of the domain (f = −1).

2. The homogeneous Neumann boundary conditions at the top boundary (∂yu = 0 at
y = 1) and the homogeneous Dirichlet boundary conditions at the bottom (u = 0 at
y = 0); the normalized pressure gradient is one in the interior of the domain (f = −1).
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Figure 3: The distribution of inclusions’ lengths.
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Figure 4: The inclusions’ distribution

3. The unit Neumann boundary conditions at the top boundary (∂yu = 1 at y = 1)
and homogeneous Dirichlet boundary conditions at the bottom (u = 0 at y = 0); the
pressure gradient is zero (f = 0).

The modified FV (1, 1) is applied for the three problem. The target grid has the mesh
spacing hx = 2−8, hy = 2−9. The computations are terminated when the L2-norm of
the residual function become less than 10−8. The convergence in the last cycle performed is
considered as the asymptotic convergence rate. For all the three problems the asymptotic
convergence rate was 0.12.

6 SIMULATION RESULTS

In the processing flows with viscous matrix and rigid inclusions, the dispersion of filler
particles often represents a major problem. Consequently, the concentration of particles
can not be expected to be uniform. As a result of the particle distribution considered
(Figure 4), the unit cell in numerical simulations has polymer-rich regions (e.g., around
points [x = 0.5, y = 0.2] and [x = 2.7, y = 0.5] as well as along the upper boundary
[y = 1]) and the regions with high density of inclusions. These microstructural features of
this particular processing flow lead to a specific flow field that is dependent on the local
distribution of obstacles. The fluid-rich regions have higher velocities and velocity gradients,
while the inclusion-rich regions have much lower velocities.

The first example of a flow field is shown in Figure 5. It corresponds to a case of a
multiphase flow in a long duct with the no-slip boundary conditions along its lower and
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Figure 5: Solution for the problem 1 with the Dirichlet boundary conditions and the unit
pressure gradient.
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Figure 6: Solution for the problem 2 with the Neumann boundary conditions at the top, the
Dirichlet boundary conditions at the bottom, and the unit pressure gradient.
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Figure 7: Solution for the problem 3 with the unit Neumann boundary conditions at the
bottom, the Dirichlet boundary conditions at the top, and the zero pressure gradient.
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upper boundary (y = 0 and y = 1, respectively) and periodic boundary conditions on the
left and right boundaries that simulate an infinite flow geometry along the x-direction. The
flow is subjected to a pressure gradient that controls the magnitude of the velocity peaks
seen in the top plot of the figure. All of the fluid-rich regions are clearly marked by the
velocity peaks and the corresponding dense distribution of velocity contour lines. Although
the velocity is zero along the top boundary of the cell (y = 1), there is enough fluid-filled
space subjected to a pressure gradient so the flow can develop.

The second example of a suspension flow is shown in Figure 6. It describes a case of
a fluid flow on an infinite substrate with the no-slip boundary condition on the bottom
(y = 0) and shear free flow on top. The pressure gradient applied across this flow results in
the predominant flow along the shear free surface that simulates a free surface. Under such
conditions, there is little flow in the sub-surface region filled with particles that populate the
cell toward the substrate. The near-surface fluid-rich region of the unit cell is sensitive to
the applied pressure, and having a fluid-rich region is sufficient for developing a local fluid
motion.

The third example of a processing flow (Figure 7) represents a rheological flow between
two plates. A non-zero shear is applied to the bottom plate (y = 0), while the other plate is
stationary (i.e. the no-slip condition is enforced along y = 1). The fact that the substrate-like
surface is along the top boundary of the cell has no difference as far as gravity is concerned.
The gravity is not accounted for due to its vanishing influence on the viscous flow in narrow
channels or film flows, both of which involve cell geometries with high aspect ratios. As
one could expect, when a tangential shear is applied to a fluid with suspended particles, the
near-by region is most affected, while the rest of the particle-filled fluid stays undisturbed
toward the substrate. The fluid-rich region near the substrate (y = 1) is subject to the zero-
flow velocity on one side, while the other side is ”shielded” from the applied shear by several
layers of particles. This case can be further investigated to study the effective viscosity of
such suspensions.

7 CONCLUSIONS

The paper presents a new multigrid method for efficient solution of flows with multiple
small particles. The method employs a novel coarsening procedure based on the Galerkin
coarsening that allows to preserve on the coarse grids an essential information about small-
scale particles that cannot be directly represented on the coarse grids. Standard multigrid
methods usually fail for such problems because of inability to handle inclusions with different
length scales The new method fully recovers the optimal efficiency of the fastest multigrid
solvers. Multiple levels of hierarchy are linked so that the number of length scales does not
hamper the computational efficiency.

Examples of the simulation results illustrate the key advantage of the proposed multigrid
method that provides high resolution and an effective handling of the large number of physical
details at various length scales. Numerical resolution allows one to simulate 1) the tiniest
particles and local details of the flow field geometry; 2) conglomeration of particles, formation
of particle clusters and subsequent deformation of such clusters; 3) local flow gradients and
velocity peaks and 4) global interactions of particle clusters. These capabilities may assist in
optimizing the processing conditions that would control the distribution of particles in the
processing flows with filler additives, which is critical for improving dispersion of particles
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and achieving desired material properties through optimal microstructure.
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